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1. INTRODUCTION

In recent years, much attention has been paid to
nanowires (NWs) as a modern functional material for
single photon devices – single photon detectors (SPDs),
single photon emitters (SPEs), etc. – that are widely used
in quantum communication  technologies  [1–3]. Most
SPDs are based on avalanche detectors with Geiger
mode. The avalanche breakdown process is due to the
presence of a strong electric field required for electron
and hole ionization. The carriers must travel a finite dis-
tance in the semiconductor layer under the influence of
an electric field to gain a sufficient energy for ionization.
This means that the ionization probability is negligible
for a certain distance, the dead space [4,5]. For example,
the ionization dead space in GaAs can be as long as 70
nm for an electric field of 5 × 107 V/m, that is more than
twice the distance a carrier needs to achieve the ioniza-
tion energy [4,6]. Reducing the size of the multiplication
region to the thickness of the dead space in SPDs based
on traditional planar materials leads to an improvement
in the determination of the avalanche process and to a
decrease the uncertainty during the avalanche multipli-
cation [5]. From this prospect, semiconductor NWs pave

the way for the further miniaturization of the multiplica-
tion region. In addition, the use of NWs in SPDs allows
one to separate the absorption region and the multipli-
cation region, increase the probability of photo-
generation, and also reduces the afterpulse effect, i.e.
reduces the erroneous repeated registration of a pho-
ton after its absorption [7–10].

It should be noted that the performance of SPDs
depends not only on their design and physical proper-
ties of the device material, but also on their defect struc-
ture. For instance, in [11] it is shown that the presence
of edge misfit dislocations (MDs) in GaN introduces
multiple gap states that leads to a narrowing of the
bandgap. Also, it is well known that electronic, mag-
netic, and optical properties of nanostructures greater
depend on the presence of various defects in their struc-
ture than bulk materials. The defect structure of semi-
conductor NWs typically includes perfect and partial
misfit dislocations [12], stacking faults [13], prismatic
(PDLs) and glide (GDLs) dislocation loops and half-
loops [14,15]. Modern experimental and theoretical meth-
ods have been extensively applied to the study of the
dislocation-free NWs with high crystal structure syn-
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thesis problem. Verified with experimental data theoretical models allow to define the critical parameters of the NWs
that lead to defect generation. Thus, many researchers to date have focused on the development of theoretical
models describing the defect structure of NWs.

Since the early 2000s, the first theoretical studies of misfit strains and mechanisms of their relaxation through
generation of various defects in axially- [16–22] and radially-inhomogeneous (core-shell) [13,14,23–63] composite
NWs have been published. A large part of these works was done within various continuum approaches [21,23,24,26–
29,31,32,34,37,44–46,48–50,53,55,58,61–63] and aimed at the calculation of critical conditions of relaxation by defect
generation. Referenced theoretical models can be divided into two groups. For both groups, the authors have used
the energetic approach, considering the energy change due to the formation of the defects. To the first group we
include the models, considering the nucleation of a final configuration of the defects, such as dislocations [23,27,45,49],
dislocation dipoles [32], dislocation loops [26,27,29,31,34,37,44,63]; to the second group we include the models,
considering the energy barriers for nucleation and evolution of the defect configuration, such as dislocations and
their dipoles [61], and dislocation loops [46,48,58,60–62].

2. QUASI-EQUILIBRIUM ENERGY APPROACH FOR CALCULATING THE
CRITICAL CONDITIONS OF MD GENERATION IN CORE-SHELL NWs

Let us consider in more detail the quasi-equilibrium energy approach suggested for core-shell NWs in [23] and used
in the models of the first group. In applying to MDs at interfaces in flat misfitting heterostructures like a thin epilayer
on a semi-infinite substrate, this approach was invented by Frank and Van der Merwe [64] and adopted in the
simplest macroscopic form by Matthews [65]. Since that time, many different modifications of this approach were
suggested (see, for example, some papers [66-81] and books [82-84]). The authors of [23] used the approach variant
suggested earlier by Gutkin and Romanov [67,73].

2.1. Straight MDs parallel to the NW axis

Within the model [23], the misfit accommodation process takes place in a composite core-shell NW by generation of
a straight edge MD at the core-shell interface (Fig. 1). The energy approach consists in comparing the coherent
strain energy of a MD-free NW W

1
 being equal to the misfit strain energy Wf relates to misfitting at the interphase

boundary only, and the total energy of a NW with a MD generated at the interphase boundary W
2
 that includes Wf,

Wd (the strain energy of the MD), Wc (the energy of the MD core) and Wint (the energy of elastic interaction of the MD
and the misfit stress in the NW):

2 1
.f d c int f d c intW W W W W W W W W W W            (1)

The expressions for Wd, Wc and Wint are given in [23] as follows:
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where D = G/[2(1 – )], H = h/R, r* = r
c
/R, and * = Gf (1 + )/(1 – ). Here G is the shear modulus,  is the Poisson

ratio, r
c
 is the dislocation core radius, b is the magnitude of the MD Burgers vector, and f is the misfit parameter. Note

that, in considering straight MDs, the energy terms are given per unit length of the MD line.
The MD generation is energetically favorable, if it leads to a decrease in the total energy change: W < 0. In order

to define the critical conditions of a relaxation process, one have to solve the equation W = 0 for the NW parameter,
for example, for the shell thickness h or for the misfit parameter f. Furthermore, misfit parameter f can be defined as
follows: f = 2(a

c
 – a

s
)/(a

c
 + a

s
), where a

c
 and a

s
 are the lattice parameters of the core and shell materials, correspond-

ingly.



21Critical conditions of dislocation generation in core-shell nanowires: a review

In the case of a NW with thin shell (h << r
0
), the equation W = 0 takes the form:

2
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which coincides with that found earlier in the case of a thin flat epilayer on a semi-infinite substrate [66].
Fig. 2 illustrates the dependence of the critical shell thickness h

c
 on the misfit parameter f for  = 0.3 and r

c
 = b =

0.4 nm at h << r
0
. Herein the equation W = 0 (see Eq. (5)) was solved with respect to h, as a result h

c
 was found. The

generation of MD is energetically favorable in -area of the Fig. 2, when the total energy change W is less than zero.
Therefore, the critical thickness h

c
 is the shell thickness above which the nucleation of MD is energetically favorable.

The MD generation in the -area is unfavorable, since the total energy change W is positive there. An increase in
the misfit parameter f leads to an increase in the level of misfit stresses in the NW and to a decrease in the critical
thickness of the shell h

c
. Thus, using Fig. 2, it is possible to select the parameters of the NWs (materials and shell

thickness) for synthesis of MD-free NWs with coherent boundary between the core and the shell.
In the opposite limiting case of a thin core surrounded by a thick shell, h >> r

0
, the generation of a MD becomes

energetically favorable if h < bexp[4(1 + ) fr
0
/b + 1/2], see Ref. [23].

Thus, the authors [23] showed for the first time, that, in the general case of comparable core radius r
0
 and shell

thickness h, the MD generation should be expected when the shell thickness is not either extremely small nor
extremely large: h

c1 
< h < h

c2
. This result is clearly issued from the analyses of another critical parameter of the system,

namely, the critical misfit value f
c
 which is easily extracted from the inequation W < 0 as follows [23]: f > f

c
, where
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Fig. 3. Dependence of the critical misfit f
c
 on (a) the shell thickness h and (b) the ratio h/R for the following values of

the core radius r
0
 (from top to bottom): r

0
= 1.5, 2, 3, 5, 10, 20, and 100 nm. Adapted from [85].

Fig. 1. Schematic representation of a core-shell NW
cross section with a straight MD; r

0
 is the core radius, R

is the NW outer radius, h is the shell thickness.

Fig. 2. The dependence of the critical shell thickness h
c

on the misfit parameter f in the thin-shell approximation
h << r

0
. The Figure is a sketch of Fig. 4 from the work

[23], all major designations are saved.
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The dependence of the critical misfit f
c
 on the char-

acteristic dimensions of the NW at  = 0.3 and b = 0.4
nm is shown in Fig. 3 [85]. As is seen, at a very small
core radius r

0
 = 1.5 nm,  f

c
is rather large, > 3%, and

monotonically increases with increasing the shell thick-
ness h. At a slightly larger core radius, r

0
 = 2 nm, a

minimum appears on the f
c 
(h) curve at h  2 nm, and the

curve itself goes much lower. As r
0
 further increases,

this minimum deepens, smoothes and shifts to the re-

Fig. 4. Schematic representation of a core-shell NW
cross section with a dipole of screw MDs placed at the
±x

0
 positions in the shell. The Burgers vectors and lines

of the MDs are parallel to the z-axis of the cylindrical
NW.

Fig. 5. Sketch of possible mechanisms of screw misfit dislocation dipole formation at the NW/matrix interface when
the NW is under antiplane eigenstrain. (a) Generation of a rectangular glide dislocation loop with Burgers vector b,
which expends in a longitudinal section of the NW from a stress concentrator (black point) in such a way that the two
screw segments gradually transform into the two straight screw dislocations while the edge segments glide to the
ends of the NW. (b) Extension of a pre-existing prismatic dislocation loop with Burgers vector b, which also produces
a dipole of elongated screw dislocation segments, while the prismatic semi-loops glide to the ends of the NW. (c) The
calculation model of a cylindrical nanowire with a dipole of screw misfit dislocations with Burgers vectors ±b, placed
at the NW/matrix interface. In (a) and (b), the numbers 1, 2, and 3 indicate the subsequent stages of the dipole
formation. Adapted from [86].

gion of higher values of h, and the curve becomes more
and more flat. Finally, at r

0
 30 nm, the minimum disap-

pears, and the f
c 
(h) curve becomes monotonically de-

creasing. Thus, the highest f
c
values are achieved in the

case of a combination of the thinnest core and the thick-
est shell, in which case it reads f

c
 b[ln(h/b) – 1/2]/

[4(1 + )r
0
]. For nanoscopic dimensions of a NW

(R  100 nm) and a core diameter of at least 3 nm, one
obtains f

c, max
 8%. The lower limit of f

c
 values is con-

veniently determined using the f
c
(h/R) curves shown in

Fig. 3b. For example, for r
0
 = 20 nm, we have f

c, min
 0.6%

at h  0.7R  47 nm.
Since the value of the misfit f is determined by the

composition of the NW and therefore is usually rigidly
specified, there arises a problem of choosing such a
ratio between r

0
 and h, at which the system would retain

its coherence. The straight line corresponding to a given
f either intersects the f

c
(h/R) curve in Fig. 3b, or passes

below it. In the first case, the criterion for the nucleation
of a MD, f > f

c
(h/R), is satisfied in a certain range of

values of the ratio h/R. For a given r
0
, this also deter-

mines the aforementioned interval of shell thicknesses
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h
c1 

< h < h
c2

. For example, for f =1.5% and r
0
 = 10 nm, the plot in Fig 3b gives h

c1
 0.26R  3.5 nm and h

c2
 0.97R  323

nm, i.e., the coherent state turns out to be energetically favorable at either a very thin or very thick shell. In the
second case, for example, for the same f and r

0
 = 5 nm, there is no intersection with the f

c
(h/R) curve, which means the

energetic preference of the coherent state at any shell thickness.
It is worth noting that similar approaches were used to investigate the critical conditions for the onset of misfit

stress relaxation in core-shell NWs through generation of straight wedge disclinations, wedge disclination dipoles
and walls of equidistant edge dislocations [24].

Besides edge MDs and wedge disclinations, screw MDs were also analyzed in detail. For example, Wang et al.
[32] considered the misfit-stress relaxation process in a core-shell NW through the generation of a dipole of screw
MDs (see Fig. 4). In this model, the core and the shell were treated as elastically different materials, and  was chosen
as a convenient parameter that determines the difference in their elastic properties:  = 2G

s
/(G

c
 + G

s
), where G

c
 and

G
s
are the shear moduli of the core and the shell materials, correspondingly.
Shodja et al. [86] suggested two possible mechanisms for the formation of such a dipole of screw MDs at the

NW/matrix interface in the case when the NW is embedded to an infinite matrix and subjected to anti-plane eigenstrain
(Fig. 5). Similar mechanisms could be responsible for the generation of the screw MD dipole in core-shell NWs as
well.

The authors of the work [32] define an equilibrium position of the MDs dipole from the condition F = 0, where F
is the Peach-Koehler force acting on the positive MD (at x = x

0
):
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where x  = x
0
/r

0
, R  = R/r

0
. In numerical calculations, the series were truncated at n = 30 for a relative error below 1%.

Based on the dependences of the Peach-Koehler force on the position of MDs, the authors showed that, when
the shell thickness h is above the critical value h

c
 there exists equilibrium positions for the MDs dipole (x

0
 =1.3r

0
 and

2.25r
0
, h = 4r

0
), but the stable position is when the MDs are close to the core-shell interface (x

0
 = 1.3r

0
). When the

shell thickness h is equal to its critical value h
c
, the two equilibrium positions of the MDs dipole converge to a single

equilibrium position (x
0
 = 1.5r

0
, h = h

c
 = 3r

0
). There is no equilibrium position for the MDs dipole when the shell

thickness h is less than the critical value h
c
.

Fig. 6 shows the dependence of the critical shell thickness h
c
 on the parameter . As is seen, h

c
 monotonically

decreases with . In the -area, there is always no equilibrium position for the MDs dipole, but in the -area, there
are two equilibrium positions for the MDs.

In the aforementioned theoretical models of MDs in core-shell NWs, the authors considered the misfit and MD
stresses within the classical theory of elasticity. However, in core-shell NWs with thinnest cores and/or shells, the
effects of the surface/interface energies, strains and stresses may occur rather strong. One of the continuum ap-
proaches, which address the surface/interface effects on elastic behavior of solids, is the so-called surface/interface
elasticity which is based on the concepts of surface free energy and surface stress in solids, first introduced by
Gibbs [87] and developed gradually over the time [88-95] (see also Ref. [95] for more references). In particular, Gurtin
and Murdoch [89,90] formulated the framework for solving problems in the surface/interface elasticity. In the frame-
work of this approach, the surface/interface is considered as an atomically thin layer with elastic characteristics
differing from those of the bulk material [96-98].
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Zhao et al. [45] and Enzevaee et al. [49] analyzed the
critical conditions for the onset of either an individual
edge MD (model 1) [45,49] or a dipole of such MDs
(model 2) [49] at the interface of an elastically isotropic
and inhomogeneous core-shell NW within both the clas-
sical and surface/interface elasticity approaches with
special attention to the non-classical surface/interface
effect. In particular, Enzevaee et al. [49] showed that this
effect can be significant for very fine cores of radius
smaller than roughly 20 interatomic distances (~5–7 nm).
The  positive  (negative)  surface/interface Lamé  con-
stants mostly make the generation of MDs easier
(harder). On the contrary, the positive (negative) residual
surface/interface tensions mostly make their generation
harder (easier). It was also showed that the formation of
an individual MD is energetically more preferential in
finer two-phase NWs, while the formation of a MD di-
pole is more expectable in the coarser ones. Fig. 7 illus-
trates the non-classical surface/interface effect on the
critical misfit value f

c
 within models 1 and 2.

Shodja et al. [86] investigated similar effect for the
generation of a dipole of screw MDs at the interface
between a NW with uniform shear misfit strain (Fig. 5)
and its surrounding unbounded matrix. The analysis
was carried out within the surface/interface elasticity
theory with using the complex potential variable method.
It was shown that the critical radius of the NW corre-
sponding to the onset of the MD dipole generation de-
creases with the increase in the uniform shear eigenstrain
inside the NW as well as when the stiffness of the NW
increases with respect to the matrix. Moreover, the criti-
cal radius strongly depends on the non-classical inter-
face parameter  = (

s
 – 

s
)/G

m
, where 

s
 is the shear

modulus of the NW/matrix interface, 
s
 is the residual

interface tension, and G
m
 is the shear modulus of the

matrix. The non-classical interface effect is that positive
(negative) values of the interface parameter  signifi-
cantly increase (decrease) the NW critical radius with

Fig. 6. The dependence of the critical shell thickness h
c

on the parameter . The Figure is a sketch of Fig. 5 from
the work [32], all major designations are saved.

respect to the classical result. This effect becomes
stronger with increase of matrix stiffness.

2.2. Circular prismatic loops of MDs in
core-shell NWs

The critical conditions for the formation of circular pris-
matic dislocation loops (PDLs) in core-shell NWs were
analyzed in a number of works [26,27,29,31,34,37,44,
50,63]. Some authors operated with their own original
[26,28,29,31,63] or already known [34,50] strict solutions
for circular PDLs in elastic cylinders, while the others
dealt with approximate formulas for strain energies of
PDLs [27,37,44].

The first strict solution was done by Ovid’ko and
Sheinerman [26] with using the classical methods of
solving the boundary-value problems in the theory of
elasticity [99]. It was later reproduced in review [28] and
some books [84,85,100], so we do not consider it here in
detail. The authors calculated the energy difference W
(given by Eq. 1) caused by the generation of a closed
circular PDL in an elastically homogeneous core-shell
NW (Fig. 8) and extracted a solution for the critical mis-
fit value f

c
 from the equation W = 0.

Fig. 9 illustrates the dependence of f
c
 on the shell

thickness h and core radius r
0
. As is seen, f

c
decreases

monotonically with increasing h and r
0
. This means that,

for a given misfit f, the nucleation of a PDL becomes
energetically favorable if h and r

0
 reach some critical

values. For comparison, in Fig. 9a, the f
c 
(h/b) dashed

curves for straight MDs considered in [23] (see the pre-
vious section), are shown. In the case of small h, these
curves pass below the solid curves plotted for PDLs,
which means the energetic preference of straight MDs
at the initial stages of shell growth. The intersections of
the dashed curves with the solid ones correspond to an
equal gain in energy from the formation of a straight
MD or a PDL. For example, for a core radius r

0
 =10b  4

nm, this balance is achieved at a shell thickness
h  30b  12 nm. For larger shell thicknesses, the forma-
tion of PDLs becomes more profitable. It is important to
note that, if the shell thickness is more than 3–4 times
greater than the core radius, then the appearance of
PDLs can be favorable even for those values of f and r

0
,

at which the formation of straight MDs is not [26].
Aifantis et al. [29] proposed a similar model (see Fig.

8), however, by using their own solutions for the misfit
stresses and the stress fields of the circular PDL in an
elastically inhomogeneous core-shell NW. The latters
were found by the method of virtual surface defects
(see, for example, reviews [101,102] for more references
and details). In the limit of elastically homogeneous core-
shell NW, the authors [29] obtained the following en-
ergy terms figuring in Eq. (1):
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Fig. 7. Dependence of the critical misfit strain f
c
 on the normalized shell thickness h/b at different values of the

normalized core radius r
0
/b and shear moduli ratio G

s
/G

c
=1.5 for different normalized surface/interface Lamé con-

stants 
s
 = 

s
 = ±0.1 nm and zero normalized residual surface/interface tensions 

0i
  within (a) the classical and (b)

the classical and non-classical solutions. (c) Comparison of the classical and non-classical solutions for different
signs of the surface/interface residual tensions at r

0 
= 30b, G

s
/G

c 
= 1.5, and 

s
 = 

s
 = 0. Here G

s
 and G

c
 are the shell

and core shear moduli; 
si
 = 

si
/G

c 
, 

si
 = 

si
/G

c 
, 

0i
  = 

0i
/G

c 
, where i = , ;

si
 and 

si
 are the surface/interface Lamé

constants, 
0i
 is the residual surface/interface tension,  and  designate the core/shell interface and the shell

surface, respectively. Adapted from [49].
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where the parameter  accounts for the dislocation core energy (for metals  = 1), t = r
0
/R, and the integrand Q(p) is

Fig. 8. Schematic representation of a core-shell NW
cross section with a circular PDL.
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0,1

 and K
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 are the modified Bessel functions of
argument p, *

0,1
I  are the modified Bessel functions of

argument tp, and **

0,1,2
I  are the modified Bessel functions

of argument tp ; t  = (r
0
 – r

c
)/R, and r

c 
= b/.

Finally, with taking into account Eqs. (1) and (12)–
(14), the solution of the equation W = 0 was given as
follows [29]:
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Fig. 9. Dependence of the critical misfit f
c
 on the shell thickness h and core radius r

0
 for the Poisson ratio  =0.3 and

the dislocation core radius r
c
= b. (a) Dependence of f

c
 on h at r

0
/b = 10 (curves 1, 1'), 20 (2, 2') and 30 (3, 3').

(b) Dependence of f
c
 on r

0
 at h/b = 5 (curve 1), 10 (2) and  (3). The solid curves correspond to the generation of a

PDL, the dashed curves to that of a straight MD. Adapted from [26].

Fig. 10. The dependence of the critical shell thickness
h

c
 on the misfit strain f. The core radius is r

0
 = 40 nm, the

radius of the PDL equals to the core radius r
0
. The as-

ymptote shows the critical misfit strains for the mis-
matched cylindrical inclusions in an infinite medium
(R ). The Figure is a sketch of Fig. 4 from the work
[29].

Fig. 10 illustrates the dependence of the critical shell
thickness h

c
 on the misfit strain f. In these calculations,

the radius of the PDL was equal to the core radius r
0
,

r
0
 = 40 nm. The asymptote shows the critical misfit strain

for the mismatched cylindrical inclusion in an infinite
medium (R  ). PDL generation is energetically
favorable in the -area and unfavorable in the -area.

Colin [31] extended the theoretical consideration of
the circular PDL formation in a core-shell NW to the
case when the elastically isotropic core and shell have
different elastic moduli. Although this work contains a
description of some principal stages of the solution pro-
cedure, but not its final result in any transparent form
suitable for checking, one can understand that the au-
thor used a classical way similar to that utilized in Ref.
26. In the framework of a thermodynamic equilibrium
approach, he calculated the energy variation from the
dislocation-free NW and determined the equilibrium
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position of the PDL as a function of the misfit stress, the
nanowire radii, and the ratio of the shear moduli be-
tween the two phases. The main conclusion was that,
depending on misfit strain and radii, for a sufficiently
soft core with respect to the shell, PDLs may form within
the core with equilibrium positions located at a few
interatomic distances from the core/shell interface. Ear-
lier, this effect of the so-called ‘stand-off’ positions of
MDs was extensively discussed for planar interfaces
(see some original papers [103–105] and book [84]).

It is worth noting that the solutions [26] for the stress
fields and strain energy of a PDL in an elastic cylinder
was later used by Gutkin et al. [34] and Colin [50] in their
further extensions to the cases of PDL generation in
NWs with cores of finite length [34] and in three-layer
NWs [50]. In both the cases, the composite NWs were
supposed elastically homogeneous.

Let us briefly consider the results reported by Gutkin
et al. [34]. In this case, the stress fields [26] of a PDL
were utilized to find the misfit stress fields of the finite-
length core which was modeled as an inclusion with
one-dimensional (1D) dilatation eigenstrain. The stress
fields of the inclusion was calculated by integration of

Fig. 11. Mechanisms of misfit stress relaxation in a NW of radius R containing a coaxial finite cylindrical core of
radius r

0 
and length h. (a) Defect-free NW. (b) A PDL with Burgers vector b forms around the core in the NW.

(c) Penny-shape mode I crack of radius c nucleates in the middle cross section of the core. Adapted from [34].

Fig. 12. Dependence of the critical misfit f
c
on the normalized NW radius R/b for various values of h/r

0
 and r

0
/b = 10

(a) and 50 (b). Adapted from [34].

the stress fields of axial virtual PDLs with infinitesimal
Burgers vectors continuously distributed over the side
surface of the core. Two different mechanisms of misfit
stress relaxation in such a NW with a cylindrical inclu-
sion were proposed and analyzed in [34]. The first mecha-
nism involved the formation of a PDL around the inclu-
sion while the second mechanism suggested the forma-
tion of a penny-shaped crack in the inclusion cross sec-
tion (Fig. 11). It was shown that both the mechanisms
can be realized in wide ranges of the structural and geo-
metric parameters of the NW and inclusion.

For example, Fig. 12 shows the dependence of the
critical (1D) misfit f

c
on the NW radius R for r

c 
=b,  = 0.3,

and various values of the core sizes h and r
0
. The plots

are shown for the case z' =h/2, where the PDL is located
in the middle cross section of the core. In this cross
section, the misfit stress f

zz
  is commonly maximum, and

so the PDL provides the strongest relaxation of misfit
stresses. As is seen in Fig. 12, for given inclusion sizes
h and r

0
, the critical misfit f

c
 first rapidly decreases with

an increase in the NW radius R and then (when R be-
comes several times as large as the core radius r

0
) ap-

proaches a constant value. This constant value of f
c
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corresponds to the limiting case of a finite-length cylindrical inclusion in an infinite matrix. Similarly, for specified NW
and core radii R and r

0
, f

c
decreases with an increase in the inclusion length h. At large values of the core aspect ratio

h/r
0
 (h/r

0
 > 10), the dependence of f

c
 on h approaches a constant level, which depends on the values of R and r

0
. This

level corresponds to the limiting case of a PDL in a core-shell NW [26,29].
The critical conditions of crack initiation inside the core (see Fig. 11c) were investigated using the force criterion

K
1
 > K

1c
, where K

1
 is the crack stress intensity factor and K

1c
 is the critical value of this coefficient for a brittle

material. The authors [34] showed that at a sufficiently large misfit strain f, this mechanism becomes effective if the
radius of the opened crack c falls into the interval c

1
 < c < c

2
, the width of which depends on the geometric dimensions

of the core and on their relation to the radius of the NW. At the same time, in most cases, the initiation of such a crack
turns out to be less preferable than the formation of a PDL, since it requires a higher critical mismatch f

c
 (Fig. 13). An

exception is the situation when the length of the core is small (less than its diameter), and the specific energy of the
free surface of the core material   Gb/8 is an order of magnitude lower than the usual values of the surface energy
(  1). Under these conditions, the crack becomes more preferable than the PDL.

Recently, Chernakov et al. [63] revisited the problem which was earlier considered in [26,29]. First, they solved the
boundary-value problem in the classical theory of elasticity for a circular PDL in an elastically isotropic cylinder by
the Lurie method [106] different from those [26,29] used before for solving this problem. Based on this solution, both
the self energy (Wd + Wc) of the PDL and the interaction energy ( dd

int
W ) for a pair of such PDLs were found as follows

[63]:
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0,1
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0,1
() are the modified Bessel functions of the first kind and the

Macdonald functions, correspondingly; J
1
() is the Bessel function of the first kind, w = 2 – 2 + 2, t = r

0
/R,

h  = h/R, and h is the distance between the PDLs. It is seen that Eq. (16) with the integrand (,t) is much simpler than
earlier formulas for the PDL energy in [26,29] (see, for example, Eqs. (12) and (14) with corresponding designations
from [29]).

With these results on hand, Chernakov et al. [63] calculated the critical conditions for nucleation of a circular PDL
in a core-shell NW and found results similar to those in [26,29]. Moreover, they also calculated the change in the total
energy of the core-shell NW being in a partly relaxed state, with an infinite row of PDLs periodically distributed at the
core-shell interface along the NW axis, per unit length of the NW. Minimizing this energy change by the row period,
they found the equilibrium distance between the PDLs, compared it with results of direct experimental observations
of MDs in InAs-GaAs core-shell NWs [36], and showed that their theoretical results (8.35–9.05 nm) well corre-
sponded to the experimental data (7.0–8.5 nm).

Thus, the models of the first group considered in this section allowed to calculate the critical conditions for the
formation of either straight MDs or closed circular misfit PDLs in core-shell NWs. The comparison of these condi-

Fig. 13. Dependence of the critical misfit f
c
 for the for-

mation of PDL (solid curve) and crack (dashed curves)
on the normalized core length h/r

0
, for r

0 
= 15b, R=30b

and different values of . Adapted from [34].
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Fig. 14. Schematic representation of a core-shell NW
cross section with a rectangular PDL 2a×2c and a planar
model of the NW in the special case of a thin shell.

tions for the appearance of misfit PDLs with experimen-
tal observations was done within simpler approximate
models for InAs-Al

x
In

1–x
As (with x = 0.20 (f = 1.3%), 0.33

(2.5%), and 0.53 (32.6%)) [37] and some other (GaAs-
GaP, GaSb-InSb, InAs-GaAs, InAs-InP, and InP-GaAs)
[44] core-shell NWs. In general, the theoretical results
occurred consistent with experimental data, although
one should take into account that this approach gives
only necessary but not sufficient conditions for the onset
of misfit stress relaxation. Indeed, the general lack of the
first group models is that they do not describe in detail
neither the mechanism of misfit defect generation nor
the energy barriers which must be overcome by the sys-
tem to pass to a new partly relaxed state. This lack is
deleted by using the second-group models that natu-
rally include both these factors. Also, the height of the
energy barrier seems to be more reliable criterion for the
onset of misfit strain relaxation than the critical param-
eters calculated within the first-group models.

3. ENERGY-BARRIER APPROACH
FOR PREDICTING MD
GENERATION IN CORE-SHELL
NWs

3.1. Generation of small rectangular
PDLs on either the interface or free
surface of NWs

To the best of our knowledge, one of the first known
studies of the relaxation process in core-shell NWs re-
lated to the second group is works [46,48]. Therein, NWs
were assumed to be elastically isotropic and homoge-
neous and the shell thickness h was assumed to be
much smaller than the NW outer radius R. Under these
conditions, the authors suggested some models when
the misfit strain relaxation process starts by the mecha-
nisms of generation of small rectangular PDLs at either
the core-shell interface or shell free surface with subse-
quent extension of the PDLs into the core or the shell.
The limitation that h << R allowed the authors to use the
approximation of a PDL near a flat free surface (see Fig.

14) in calculation of the PDL strain energy. As a result, it
was showed that the PDLs of the shape elongated along
the interface are the most preferable and the free surface
is the most favorable place for their generation. A de-
tailed description of these models is given in work [48].
Here we just trace some principle stages of their exami-
nation.

Taking into account the foregoing assumptions, the
authors of [46,48] used the well-known solution for the
strain energy Wd of a rectangular PDL that lies in a plane
perpendicular to the flat free surface of an elastic me-
dium [107]:

2

,
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d Db L
W   (18)

where b is the Burgers vector magnitude of the PDL and
L is the effective length which reads
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with the following denotations in the case of PDL gen-
eration from the NW free surface:
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a and c are the dimensions of the PDL (see Fig. 14).
The core energy Wc of the PDL was estimated with

usual approximation as follows:
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Fig. 15. The maps of the energy change W in the space of normalized sizes of the PDL (2a/b, 2c/b) for (a) Si-Ge and
(b) InAs-ZnS core-shell NWs at R = 100 nm and h = 5 nm. The PDL is generated from the NW free surface, see inset
in (b). The energy values are given in units of Gb3.
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The interaction energy Wint was calculated as the
work spent to nucleate the PDL in the misfit stress field
in the shell of NW:
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Fig. 15 shows the energy maps in the space of the
loop normalized sizes for a PDL that generated from the
free surface in Si-Ge (Fig. 15a) and InAs-ZnS (Fig. 15b)
core-shell NWs. As is seen, the generation of the PDL
on the free surface of the Ge shell in the Si-Ge NWs is
energetically unfavorable (Fig. 15a), whereas the gen-
eration of the PDL in the ZnS shell of the InAs-ZnS
NWs is energetically favorable only for the PDLs elon-
gated along the free surface (when 2c > 6b, Fig. 15b).
PDLs of other configurations must overcome large en-
ergy barriers that prevent their nucleation.

Thus, following [26,46,48] and Eqs. (18)–(20), one
can assume that initial strained state can relax through
generation of PDLs as shown in Fig. 16. The PDLs first
nucleate on the free shell surface and further extend
into the shell. Nucleating PDLs have a rectangular shape
which further transforms in such a way that PDLs could
extend along the interface and form a growing arc of
MD at the interface. As a result, closed circular misfit
PDLs form around the cores in the cross section of NWs
at the final stage of the relaxation process [48].

It is worth noting that similar theoretical models were
suggested to describe the critical conditions for the gen-
eration of either closed circular [47,85,108-111] or initial

small rectangular [46-48,54,112] PDLs in spherically sym-
metric core-shell nanoparticles. In doing so, Gutkin et
al. [47] noticed that the formation of rectangular PDLs
does not necessarily leads to the formation of circular
PDLs and, at the same time, the formation of circular
PDLs does not necessarily occurs by the mechanism of
initially rectangular PDL expansion and closure. There-
fore, the formation of both can be considered to a first
approximation as two independent stress relaxation
ways. At the same time, if both ways could be applied to
identical nanoparticles, it is reasonable to assume that
they are interrelated according to the schematics shown
in Fig. 16. Based on these assumptions, Gutkin et al. [47]
compared the critical conditions of nucleation of such
PDLs. They showed that either a coherent (dislocation-
free) state of the nanoparticle or its relaxed state with a
circular PDL at the interface is favorable in the case of a
relatively small lattice misfit between the core and shell
materials. For large misfits, the coherent state is
unfavorable. In this case, as the shell thickness in-

Fig. 16. Initial and intermediate stages of the generation
of a PDL from the free surface of the shell to its bulk.
The arrows show the directions of the loop expansion.
The Figure is a sketch of Fig. 2b from the work [48], all
major designations are saved.
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Fig. 17. Dependences of the critical shell thickness h
c

on the misfit parameter f at r
0
 = 48 nm in the cases of

nucleation of circular (solid curve) and rectangular
(dashed curve) PDLs. The radius of a circular PDL equals
to the core radius r

0
, the sizes of the rectangular PDL are

a/c = 0.2 and c/b = 10, b = 0.3 nm.

creases, it can be expected that, first, rectangular PDLs
will appear, then circular PDLs will be formed while re-
taining rectangular PDLs, and then rectangular PDLs
will gradually grow and transform to circular PDLs.

Following Gutkin et al. [47], similar comparison of
relaxation processes (nucleation of circular or rectangu-
lar PDLs) can be done for core-shell NWs as well, by
using the dependences of the critical shell thickness h

c

on the misfit parameter f. Fig. 17 shows these
dependences for circular (solid curves) and rectangular
(dashed curves) PDLs in NWs with the core radius r

0
 =

48 nm. The circular PDL nucleation is energetically
favorable if f and h fall within the range over the corre-
sponding solid curve ( )circ

c
h f , while the rectangular PDL

nucleation is favorable, if these parameters fall within
the range under the corresponding dashed curve

( )rec

c
h f . It should be noted that, in the case of rectangu-
lar PDLs, the described dependence shows the maxi-
mum shell thickness for the presence of PDLs. Thus, in
this case, the critical thickness h

c
 has the opposite mean-

ing in comparison with the traditional definition that
shows the value of the film (shell in our case) thickness
above which the nucleation of MDs becomes energeti-
cally favorable, which is also true for circular loops.

Fig. 17 contains five areas corresponding to differ-
ent states of defect structure in the core-shell NW. The
-area is the area of the coherent (MD free) NW state
which is implemented at relatively small misfit values
(f < 0.026). Circular PDLs can appear in the region of
-area, where nevertheless rectangular PDLs cannot nu-
cleate. This means that the formation of circular PDLs
from initial rectangular PDLs (Fig. 16) is inapplicable
there. In the -area, it is possible for rectangular PDLs to
nucleate, nevertheless, circular PDLs cannot be formed.

In the -area, both rectangular and circular PDLs can
appear. This means that the action of the mechanism of
rectangular PDL growth and their transformation to cir-
cular PDLs (Fig. 16) can be expected in this area. The
nucleation of new rectangular PDLs terminates at the
upper bound of the -area drawn by the curve ( )rec

c
h f .

However, rectangular PDLs which are formed for that
moment, can continue to expand and transform to circu-
lar PDLs. Finally, in the -area, the transformation of
rectangular PDLs to circular PDLs should gradually ter-
minate, and new rectangular PDLs should not appear,
while circular PDLs can continue to nucleate as in the
neighboring -area.

It should be noted that to date there is a number of
works considering the initial process of relaxation as a
result of the nucleation of rectangular PDLs in other
various nanostructures, such as bi- and tri-nanolayers,
hollow cylindrical core-shell NWs and solid core-shell
NWs with hexagonal, squared and triangular cross sec-
tions of cores [46,48,54,58,60]. In this respect, one can
compare the stability of such nanostructures to the ge-
neration of small rectangular PDLs from the free surface
(similar to the PDL shown in Fig. 14). Note that the core
and strain energies (Wc and Wd) of the PDLs were taken
equal for all nanostructures, see Eqs. (18) and (19), re-
spectively. Thus, it was necessary to calculate only the
interaction energies between the PDLs and the misfit
stresses in the corresponding nanostructure. For exam-
ple, some of them read in

(i) bi-nanolayer
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where H is the total thickness of a bi-nanolayer and h is
the film thickness in the bi-nanolayer;

(ii) tri-nanolayer
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where H* is the total thickness of a tri-nanolayer;
(iii) core-shell nanoparticle
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where r
0
 is the core radius and R is the nanoparticle radius;

(iv) nanowire with hexagonal core
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where p = r/R, q = /R, 2 2

0 0
,x y    = tan-1(y

0
/x

0
),  = tan-1k, (x

0
,y

0
) and (,) are the Cartesian and polar

coordinates, respectively, of a hexagonal corner, r and  are the dimensions of global polar coordinate system of the
NW;

(v) nanowire with squared core
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(vi) nanowire with triangular core
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In the cases of NWs with faceted cores, the interaction energies Wint were calculated numerically within the
Wolfram Mathematica software.

In order to compare the critical relaxation conditions in composite nanostructures, it is more convenient to use
the dependences of the critical shell (film for flat heterostructures) thickness h

c
 on the misfit parameter f (see Fig. 18).
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The generation of PDLs in a nanostructure is ener-
getically favorable when the values of h and f fall into
the area under the curve (Fig. 18). Therefore, the most
stable nanostructure in this sense is either NW with
triangular core cross section, in the range of f < 0.075, or
bi-nanolayer, in the range of f >0.075, as it is character-
ized by the smallest area under the corresponding curve.
On the other hand, the tri-nanolayer is the least resist-
ant to the PDL formation. The symmetry of the tri-
nanolayer structure excludes its bending and, as a re-
sult, the films covering the substrate suffer larger misfit
stresses than in the case of bi-nanolayer with the film of
the same thickness. The stability of nanoparticles is
close to the stability of a NW with hexagonal core cross
section. NWs with circular core cross section are the
least stable among core-shell NWs against nucleation
of PDLs from the free surface.

3.2. Generation of straight MDs near the
edges of prismatic cores

Besides generation of PDLs, various mechanisms of
nucleation of straight edge dislocations, leading to the
formation of straight MDs at the core-shell interface,
were considered within the energy-barrier approach as
well. In doing so, Smirnov et al. [61] recently analyzed
the energy barriers for generation of partial and perfect
straight edge dislocations and their dipoles at the inter-
face in core-shell NWs with faceted cores (Fig. 19). The
core had the shape of a long parallelepiped of a square
cross-section and was placed symmetrically with respect
to the cylindrical shell surface. For the sake of definite-
ness, the authors did their calculations for model metal

Fig. 18. Dependences of the critical shell (film) thickness h
c
 on the misfit parameter f for various nanostructures in

which PDLs are generated from the free surface. The outer radius of NWs and nanoparticle is R = 75 nm, the full
thickness of bi-nanolayer is H = R = 75 nm, the full thickness of tri-nanolayer is H* = 2H = 2R = 150 nm, the PDL sizes
are a/c = 0.2 and c/b = 10, b = 0.3. In the case of NW with polyhedral cores, the shell thickness was taken as the
distance between the core corner and the free cylindrical surface.

Fig. 19. Schematic representation of a core-shell NW
cross section with faceted core. (a) Glide (on the left) or
climb (on the right) of partial (top left) and perfect (bot-
tom left and top right) MDs from the shell free surface.
(b) Nucleation of dipoles of partial (top) and perfect
(bottom) MDs at the edges of the core. The core cross
section is a square with the side 2l. Figure is a sketch of
Fig. 1 from the work [61], all major designations are saved.

gold/palladium NWs, however, similar calculations
could be performed for semiconductor NWs with using
the appropriate parameters of the material.

As discussed earlier, generation of MDs leading to
the misfit stress relaxation is energetically favorable if
the corresponding change in the total energy of the
system W is negative. According to the type of the
defect structure, the energy change W is given by one
of the following four equations.

For a partial MD:

( ) ( ) ( )

( ) ( ).

d c int

par par par

ss

par par

W W b W b W b

W b W b

   

 
 (27)

For a perfect MD:

(a) (b)
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( ) ( ) ( ) ( ).d c int ss

per per per per
W W b W b W b W b      (28)

For a dipole of partial MDs (DMDs):

( ) 2 ( ) ( ) ( ).d c int

DMDs par par DMDs par DMDs par
W W b W b W b W b      (29)

For a dipole of perfect MDs:

( ) 2 ( ) ( ).d c int

DMDs per per DMDs per
W W b W b W b     (30)

Here Wss is the energy of step formation during the generation of the MD by glide from the free surface, W is the
stacking fault energy, b

par
 (b

per
) is the Burgers vector magnitude of a partial (perfect) dislocation.

The strain energy Wd of an individual edge dislocation (Fig. 19a) in a NW reads [113]:

2

*

* 2 2

0 0

2

0 0 0

0 0 04 2 2 2 2 2

0 0 0 0 0 0 0 0

( ) ,
8

( 1)(1 2 ( 1)) ( 1)(1 2 ( 1)) ln( ),

, , , ,
( ( ) 2) ( 1)

d Db
W b G

G M y M M y M M M

r x y b
M x y r

y x x r y x r x R R R

     




 

        


   

      

 


  

       

 (31)

where 0x  and 0y  are the Cartesian coordinates of the dislocation, b’ = b
par

 for the partial MD and b’ = b
per

 for the
perfect MD.

Using the approach suggested in [113], Smirnov et al. [61] calculated the strain energy of an edge dislocation
dipole (Fig. 19b) as follows:
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where x
1
, x

2
 and y

0
 are Cartesian coordinates of the MDs.

The MD core energy Wc was estimated by standard Eq. (3).
The interaction energy Wint for a gliding MD (Fig. 19a) was calculated as the work spent to generate an individual

MD in the NW misfit stress 
xy

 that is given by the sum 
xy

 = 
xy

  + *

xy
  (the details on calculating the stress field in

a NW with parallelepipedal core are given in [61]), as:
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where C = Gf(1 + )/[2(1 – )], 2 / ,l R   (x
0
, y

0
) are the Cartesian coordinates of the MD,  = tan-1(y/x),

2 2 ,r x y   (x,y) and (r,) are the Cartesian and polar coordinate systems
,
 respectively..

In the case of individual MD generation by climbing (Fig. 19a), the interaction energy Wint was determined by the
following expression:
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The interaction energy int

DMDs
W  was calculated as the work spent to generate a dipole of MDs (Fig. 19b) in the misfit

stress field 
xy

 = 
xy

  + *

xy
  in the glide plane along the core/shell interface in the NW:

2
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0
( , ) d .

x

int
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W b x y y x     (35)

The stacking fault energy W  for a partial MD was given by [113]:
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In the case of a partial MDs dipole, it was:

   2 2 1 1
.

DMDs
W x l x l        (37)

Here 
1
 is the specific energy of the stacking fault in the

shell, and 
2
 is that in either the shell or core along the

core-shell interface.
The energy of the surface step Wss, which occurs

due to the MD generation from the free surface of the
shell, was approximated by the well-known formula:

2 2( ) / 8 / 2.ssW b Gb Db     (38)

With Eqs. (27)–(38), Smirnov et al. [61] calculated
energy barriers for each relaxation process in NWs
shown in Fig. 19. In doing so, they used the following
parameters in their calculations: a

Au
 = 0.408 nm and

a
Pd:Au =50:50

= 0.398 nm; the Burgers vector magnitudes

b
par 

= a/ 6  and b
per 

= a/ 2 ; the misfit value f = 0.046;

the Poisson ratios 
Au 

= 0.4 and 
Pd:Au=50:50 

= 0.395; the
shear moduli G

Au 
= 27 GPa and G

Pd:Au=50:50
= 35.5 GPa; the

stacking fault energies 
Au 

= 31 mJ/m2, 
Pd:Au=60:40

=120
mJ/m2, 

Pd:Au=50:50
=108 mJ/m2, 

Au
 

Pd:Au
 , G

Au 


G
Pd:Au 

 G. Note that the authors took various values of
the stacking fault energy, depending on the positions
of those partial MDs which are generated in the shell
only, 
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Fig. 20. The preference diagrams for various relaxation processes in core-shell NWs at R = 2l. The left scale shows
the energy barrier value. The Figure is a sketch of Fig. 10a from the work [61], all major designations are saved.

and those partial MDs which are generated in the shell
and core: 

2 2

0

1 Pd:Au 60:40
|

R l x l


   
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0
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The comparison of these calculations is visualized
through the preference diagrams shown in Fig. 20. As is
seen, the energy barriers for generation of MD dipoles
are always lower than those for generation of individual
MDs of the same type (either partial or perfect). There-
fore, the formation of MD dipoles from the core edge is
more expectable than the generation of individual MDs
from the free surface of the shell. Dipoles of partial MDs
are more expectable in relatively thin NWs than dipoles
of perfect MDs; however, in relatively thick nanowires,
one should expect that the most energetically favorable
defects are the dipoles of perfect MDs. It should be
noted that this fact is also valid for individual MDs. At
R=2l, the generation of perfect MDs by climb from the
free surface is the least favorable mechanism of relaxa-
tion.

4. CONCLUSIONS

In conclusion, we have reviewed some analytical mod-
els aimed at predicting the critical conditions for the
generation of MDs and related dislocation structures in
core-shell NWs. We have shown that most of analytical
models describe the misfit relaxation process in core-
shell NWs through the generation of various defects in
their final configurations within the quasi-equilibrium
energy approach. These models allow to define the criti-
cal parameters (mostly the critical sizes of NWs and
critical value of the misfit parameter) at which the forma-
tion of the misfit defects becomes energetically favorable.
The main results, achieved by this group of models, can
be summarized as follows:
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· The most common final MD configurations in core-
shell NWs, being under discussion, are straight MDs
and closed misfit PDLs.
· The most universal critical parameter is the critical
misfit value f

c
 which is easily extracted from the energy

balance due to linear contribution of the misfit param-
eter f in the balance.
· For any values of the NW radius R and the ratio
t = r

0
/R of the inner and outer radii of the NW, one can

find the minimum value f
c,min

 of the critical misfit such as
for f < f

c,min
, MD generation is not energetically favorable;

when f > f
c,min

, there is an interval of t values, t
c1

 < t < t
c2

,
where t

ci 
= t

ci 
( f, R), i = 1,2, in which MD generation is

energetically favorable; when f  f
c,min, 

t
c1
 t

c2
.

· The larger is the NW radius R, the smaller is the mini-
mum critical misfit f

c,min
.

· For a fixed value of f , one can find the minimum critical
radius of the NW, R = R

c,min
, such as for R < R

c,min
, MD

generation is not energetically favorable for any value
of t.
· The larger is the misfit value f, the smaller is the mini-
mum critical radius of the NW R

c,min
.

· In the case of thin shell on massive core (the shell
thickness h << R), when f > f

c,min
, the critical condition

can be taken in the form of h > h
c
, where the critical shell

thickness has the same meaning as for flat film-substrate
heterostructures; in this case, the larger are the NW
radius R and the misfit value f, the smaller is the critical
shell thickness h

c
.

· In the case of thick shell on thin core (the shell thick-
ness h >> r

0
), when f > f

c,min
, the critical condition can be

taken in the form of r
0
 > r

0c
, where r

0c
 is the critical radius

of the core; in this case, the larger are the NW radius R
and the misfit value f, the smaller is r

0c
.

· The difference in elastic constants of the core and
shell materials, as well as the elastic constants of the
shell free surface and the core-shell interface, and the
surface and interface tensions can strongly influence
the critical conditions of MD generation in core-shell
NWs. In particular, the positive (negative) surface/in-
terface elastic constants mostly make the generation of
MDs easier (harder). On the contrary, the positive (nega-
tive) residual surface/interface tensions mostly make
their generation harder (easier).
· In the case, when f > f

c,min
 and t

c1
 < t < t

c2
, the equilib-

rium density of misfit PDLs can be calculated; the re-
sults of corresponding calculations for InAs-GaAs core-
shell NWs are in a good accordance with experimental
data.

Another group of relaxation models for core-shell
NWs considered the energy barriers for nucleation and
evolution of the defect configuration that allowed to
choose between different ways of misfit relaxation and
to predict the final misfit defect structure in NWs. The
following results on this direction were obtained:

· The analysis was done for the models dealing with
nucleation of small rectangular PDLs and straight edge
MDs on free surfaces of the shells and at core-shell
interfaces of various shapes.
· Nucleation of small rectangular PDLs was investigated
in the case of thin shell on massive core for different
shapes of the core cross section: circular, triangular,
square and hexagonal.
· The most probable scenario for PDL appearance in
the core-shell NWs is the formation on the shell free
surface of small rectangular PDLs extended along this
surface in the cross sections of the NWs.
· The critical conditions for nucleation of small rectan-
gular PDLs of fixed sizes can be formulated either as
f > f

c
 (for given values of R and h) or h < *

c
h  (for given

values of R and f ), where *

c
h  has the different meaning

to that traditionally used in the case of flat film-substrate
heterostructures: it is the maximal thickness of the shell
at which the misfit strain/stress is sufficient for genera-
tion of PDLs.
· The larger are the NW radius R and the misfit value f,
the larger is the critical thickness *

c
h .

· Nucleation of straight edge MDs was considered in
the case of core-shell NWs with prismatic core of square
cross section.
· Among some different mechanisms of misfit strain
relaxation in such NWs, the nucleation of glide MD di-
poles at the core edges was shown to be the most prob-
able; in the exemplary case of Au-Pd core-shell NWs,
the dipoles of partial MDs are the most expectable in the
thinnest NWs of radius 5–10 nm, while dipoles of per-
fect MDs are the most expectable in the coarser NWs of
radius 50 nm.
· The generation of perfect MDs by climb from the free
surface is the least favorable mechanism of relaxation in
the core-shell NWs.

Finally, by analogy with the Matthews-Blakeslee
critical film thickness approach for flat film/substrate
heterostructures, most of the considered models sug-
gest the dependences of the critical shell thickness on
the parameters of the NW materials. Such dependences
are convenient from the practical perspective, since they
are able to reduce the number of expensive experiments
aimed at the synthesizing of dislocation-free NWs which
have a great impact on quantum communications in fu-
ture networks. The predicted defect structure in core-
shell NWs could be of interest to researchers dealing
with elaboration and characterization of the NWs.
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